Calltouch Performance Awards 2021

П Погрешность

Чтобы качественно проводить маркетинговые исследования, необходимо учитывать погрешность измерений. Из-за пренебрежения этим параметром рекламная кампания может не пройти успешно и принести убытки фирме. Производя математические расчеты, удается получить данные, максимально приближенные к реальным цифрам.

Определение

Проводя измерение параметров рынка, маркетолог получает результаты в виде таблиц, графиков и пр. Эти данные он предоставляет заказчику. Но в отчетах не все специалисты указывают важную величину — погрешность, о которой клиент не подозревает. 

Погрешность — это отклонение результата данных от измеряемой величины. Термин используется в физике, экономике и маркетинге.

Погрешность измерений — это сумма всех погрешностей, у каждой из которых имеется причина.

Оценка специалиста считается неточной, если эта величина не указана.

Что влияет на погрешность

На погрешность влияют:

  • неточности из-за принципа регистрации;

  • причины, объясняемые концевой мерой;

  • факторы, обусловленные исполнителем действий;

  • причины, провоцируемые изменениями условий.

Погрешность, связанная с методиками измерения (их несовершенство, упрощение) возникает из-за выбора примерных формул или неподходящего способа. Использование не того метода случается из-за несоответствия рассматриваемой величины и модели.

Факторы, влияющие на процесс:

  • Вариативность показаний — это самая явная разность показателей, полученных в прямом или обратном ходе при одинаковом действительном значении рассматриваемой величины и неизменных окружающих условий процесса.

  • Прецизионность — позволяет понять, насколько точно производятся расчеты. Определяется тем, насколько схожие получается показатели при одинаковых условиях измерений.

Классификация

Погрешности классифицируются по нескольким характеристикам. В маркетинговых исследованиях используются не все ее виды, поскольку погрешность в этой сфере не измеряется при помощи специальных приборов.

По форме представления

Первый тип — абсолютная погрешность. Она представляет собой алгебраическую разность между реальным и номинальными значениями. Она регистрируется в тех же величинах, что и основной объект. В расчетах абсолютный показатель помечается буквой ∆.

Например, линейка — наиболее простой и привычный каждому измерительный инструмент. При помощи верхней шкалы на ней определяются значения с точностью до миллиметра. Нижняя имеет другой масштаб (до 0,1 дюйма–2,54 мм). Несложно проверить, что на этом приборе погрешность верхней части меньше, чем нижней. Точность измерений в случае с линейкой будет зависеть от ее конструктивных особенностей.

Абсолютная погрешность измеряется той же единицей измерений, что и изучаемая величина. В процессе используется формула:

Δ = х1 – х2, где х1 — измеренная величина, а х2 — реальная величина.

Второй тип – относительная погрешность (проявляется в виде отношение абсолютного и истинного значения). Показатель не имеет собственной единица измерения или отражается процентно. В расчетах помечается как δ.

Она является более сложным значением, чем может показаться. В расчетах используется формула:

δ = (Δ / х2)·100 %

Стоит отметить, что если истинное значение имеет малую величину, то относительная — большую. Например, если стандартной линейкой (30 см) измеряется коробки (150 мм), то вычисление будет иметь вид: δ = 1 мм/150 мм = 0,66%. Если этот же прибор использовать для экрана смартфона (80 мм), то получится δ = 1 мм/80 мм = 1,25%. Получается, что в обоих случаях абсолютная погрешность не изменяется, но относительная отличается в разы. Во втором случае рекомендуется использовать более точный прибор.

Последний тип — приведенная погрешность. Она используется, чтобы не допустить такого разброса на одном приборе. Работает, как относительная, но вместо истинного значения в формуле применяется нормирующая шкала (общая длина линейки, например).

γ = (Δ / х3)·100 %, где х3 — это нормирующая шкала

Например, если потребуется измерить ту же коробку и смартфон, то придется учесть абсолютную величину в 1мм и приведенную погрешность — 1/300*100 =0,33 %. Если взять швейный метр и сравнить его с линейкой, то получится, что первый показатель в обоих случаях остается 1 мм, а второй отличается в разы (0,33% и 0,1%).

По причине возникновения

Тут выделяются два типа погрешностей:

  • Инструментальные — они объясняются особенностями строения измерительных приборов. Могут встречаться на фоне недостаточного качества частей оборудования. К такого рода погрешностям относят производство конструкции, ошибки из-за трения механизмов, малой жесткости поверхностей. Показатель отличается для любого из измерений и не может быть обобщен.

  • Методическая — это неточности расчетов, проявляющиеся из-за несовершенства применяемых методом, ошибок вычислений, соотношений, применяемых для оценки.

В маркетинге возможен только второй тип погрешности.

По характеру проявления

Выделяются систематические погрешности, которые характеризуются постоянными или закономерными изменениями показателей при повторных измерениях в пределах одной величины. 

Другой вид — случайные погрешности. Они проявляются в произвольном порядке при повторном измерении одних и тех же величин. 

Статическая погрешность — это неточность результата, характерная для статических измерений. 

Динамическая погрешность — характерна для изменяемых величин. 

По способу измерения

Выделяется погрешность градуировки приборов. Относится к действительному значению величины, указанному в той или другой отметке прибора в результате нанесения градуировки.

Также встречается неточность адекватности модели. Проявляется в виде неточности при подборе функциональной зависимости. В качестве примера можно взять процесс расчета линейной зависимости по сведениям, которые эффективнее отражаются совсем другим методом. Эта неточность используется для проверки модели.

Заключение

В маркетинге обычно используют данные статистической погрешности. Они помогают специалистам предварительно узнать результат и определить успешность рекламной кампании. Знание формул и умение проводить расчеты повышает экспертность и ценность специалиста. 


Читать