Определение Big data обычно расшифровывают довольно просто – это огромный объем информации, часто бессистемной, которая хранится на каком либо цифровом носителе. Однако массив данных с приставкой «Биг» настолько велик, что привычными средствами структурирования и аналитики «перелопатить» его невозможно. Поэтому под термином «биг дата» понимают ещё и технологии поиска, обработки и применения неструктурированной информации в больших объемах.
Словосочетание «большие данные» появилось в 2008 году с легкой руки Клиффорда Линча. В спецвыпуске журнала Nature эксперт назвал взрывной рост потоков информации – big data. В него он отнес любые массивы неоднородных данных свыше 150 Гб в сутки.
Из статистических выкладок аналитических агентств в 2005 году мир оперировал 4-5 эксабайтами информации (4-5 миллиардов гигабайтов), через 5 лет объемы big data выросли до 0,19 зеттабайт (1ЗБ = 1 024 ЭБ). В 2012 году показатели возросли до 1,8 ЗБ, а в 2015 – до 7 ЗБ. Эксперты прогнозируют, что к 2020 году системы больших данных будут оперировать 42-45 зеттабайтов информации.
До 2011 года технологии больших данных рассматривались только в качестве научного анализа и практического выхода ни имели. Однако объемы данных росли по экспоненте и проблема огромных массивов неструктурированной и неоднородной информации стала актуальной уже в начале 2012 году. Всплеск интереса к big data хорошо виден в Google Trends.
К развитию нового направления подключились мастодонты цифрового бизнеса – Microsoft, IBM, Oracle, EMC и другие. С 2014 года большие данные изучают в университетах, внедряют в прикладные науки – инженерию, физику, социологию.
Чтобы массив информации обозначить приставкой «биг» он должен обладать следующими признаками:
Правило VVV:
В современных системах рассматриваются два дополнительных фактора:
Принцип работы технологии big data основан на максимальном информировании пользователя о каком-либо предмете или явлении. Задача такого ознакомления с данными – помочь взвесить все «за» и «против», чтобы принять верное решение. В интеллектуальных машинах на основе массива информации строится модель будущего, а дальше имитируются различные варианты и отслеживаются результаты.
Современные аналитические агентства запускают миллионы подобных симуляций, когда тестируют идею, предположение или решают проблему. Процесс автоматизирован.
К источникам big data относят:
Устойчивость к отказу. Повышать количество цифровых носителей, интеллектуальных машин соразмерно объемам данных можно до бесконечности. Но это не означает, что часть машин не будет выходить из строя, устаревать. Поэтому одним из факторов стабильной работы с большими данными является отказоустойчивость серверов.
Локализация. Отдельные массивы информации хранятся и обрабатываются в пределах одного выделенного сервера, чтобы экономить время, ресурсы, расходы на передачу данных.
Чем больше мы знаем о конкретном предмете или явлении, тем точнее постигаем суть и можем прогнозировать будущее. Снимая и обрабатывая потоки данных с датчиков, интернета, транзакционных операций, компании могут довольно точно предсказать спрос на продукцию, а службы чрезвычайных ситуаций предотвратить техногенные катастрофы. Приведем несколько примеров вне сферы бизнеса и маркетинга, как используются технологии больших данных:
Здравоохранение. Больше знаний о болезнях, больше вариантов лечения, больше информации о лекарственных препаратах – всё это позволяет бороться с такими болезнями, которые 40-50 лет назад считались неизлечимыми.
Предупреждение природных и техногенных катастроф. Максимально точный прогноз в этой сфере спасает тысячи жизней людей. Задача интеллектуальных машин собрать и обработать множество показаний датчиков и на их основе помочь людям определить дату и место возможного катаклизма.
Правоохранительные органы. Большие данные используются для прогнозирования всплеска криминала в разных странах и принятия сдерживающих мер, там, где этого требует ситуация.
К основным способам анализа больших массивов информации относят следующие:
Стратегии развития бизнеса, маркетинговые мероприятия, реклама основаны на анализе и работе с имеющимися данными. Большие массивы позволяют «перелопатить» гигантские объемы данных и соответственно максимально точно скорректировать направление развития бренда, продукта, услуги.
Например, аукцион RTB в контекстной рекламе работают с big data, что позволяет эффективно рекламировать коммерческие предложения выделенной целевой аудитории, а не всем подряд.
Какие выгоды для бизнеса:
Методики big data используют все крупные компании – IBM, Google, Facebook* (Meta* — признана экстремистской организацией) и финансовые корпорации – VISA, Master Card, а также министерства разных стран мира. Например, в Германии сократили выдачу пособий по безработице, высчитав, что часть граждан получают их без оснований. Так удалось вернуть в бюджет около 15 млрд. евро.
Недавний скандал с Facebook из-за утечки данных пользователей говорит о том, что объемы неструктурированной информации растут и даже мастодонты цифровой эры не всегда могут обеспечить их полную конфиденциальность.
Например, Master Card используют большие данные для предотвращения мошеннических операций со счетами клиентов. Так удается ежегодно спасти от кражи более 3 млрд. долларов США.
В игровой сфере big data позволяет проанализировать поведение игроков, выявить предпочтения активной аудитории и на основе этого прогнозировать уровень интереса к игре.
Сегодня бизнес знает о своих клиентах больше, чем мы сами знаем о себе – поэтому рекламные кампании Coca-Cola и других корпораций имеют оглушительный успех.
В 2019 году важность понимания и главное работы с массивами информации возросла в 4-5 раз по сравнению с началом десятилетия. С массовостью пришла интеграция big data в сферы малого и среднего бизнеса, стартапы:
Системы самообслуживания – с 2016 года внедряются специальные платформы для малого и среднего бизнеса, где можно самостоятельно хранить и систематизировать данные.
Мы изучили, что такое big data? Рассмотрели, как работает эта технология, для чего используются массивы информации. Познакомились с принципами и методиками работы с большими данными.
Рекомендуем к прочтению книгу Рика Смолана и Дженнифер Эрвитт «The Human Face of Big Data», а также труд «Introduction to Data Mining» Майкла Стейнбаха, Випин Кумар и Панг-Нинг Тан.
Хочу получать интересные новости блога
31 мая 2023
27 ноября 2023
29 ноября 2023
21 ноября 2023
Нажимая на кнопку, вы даете согласие на обработку своих персональных данных